If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+6x-2=0
a = 4.9; b = 6; c = -2;
Δ = b2-4ac
Δ = 62-4·4.9·(-2)
Δ = 75.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-\sqrt{75.2}}{2*4.9}=\frac{-6-\sqrt{75.2}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+\sqrt{75.2}}{2*4.9}=\frac{-6+\sqrt{75.2}}{9.8} $
| 5x+7=-15x-1/3+4/3 | | x+4x+3x=54 | | ($72)(0.14)=x | | 3^(x+1)=17 | | 3x-4-7=-5 | | v+5-7=4 | | (X)+x+8+x+1-9=69 | | 1/y+3=5 | | 12x^2-4=52× | | 90=x+3×5 | | 1/6x+3=4 | | 90=x+3(5) | | -17=-14n+1 | | 2x+3x+4x=100 | | 5+x-6x=10 | | 9v^2+11=4v | | 3+x×5=90 | | 7.8=3+0.8n | | x-2x+3=3-8 | | -3/5b=+7+2/5b=19 | | 3(2x+-14)+x=15-(-9x-5) | | 2x-2+x+1+x+1+x=2x-9+x+1+x+8+x | | 3(2x+-14)+x=15-x(-9x+-5) | | 3k^2=-2k+6 | | 7+n-6n=17 | | 45+30x=100+25x | | 45x+30=100x+25 | | 3(2x-14)+x=15-x(-9-5) | | 4,200=11x-4*50 | | 0.3(6x-5)=-1.8x-1.5 | | Y^2-21x+108=0 | | 5^x-9=20 |